Voyage to Vaccine Discovery Continues with Space Station Salmonella Study

Any scientist can tell you that research is a time-consuming pursuit. In fact, it can take decades to show results, as the knowledge compounds and inspires additional studies. This building of information is what led to the Recombinant Attenuated Salmonella Vaccine or RASV investigation, which launched to the International Space Station on July 8, 2011.

The investigation combines decades of expertise between two Arizona State University research teams. One team, led by Cheryl Nickerson, Ph.D. specializes in the use of the spaceflight platform to provide insight into how microbial pathogens cause infection and disease in the human body. The other team, led by Roy Curtiss III, Ph.D. focuses on the design and clinical testing of next generation vaccines to protect against diseases caused by pathogenic microbes. In addition, the Arizona State University researchers partnered with Mark Ott, Ph.D., at NASA's Johnson Space Center to strengthen the team's core expertise of space microbiology.

The vaccine samples that were flown on STS-135 are a genetically altered strain of Salmonella that carries a protective antigen against Streptococcus pneumonia -- a bacteria that causes life-threatening diseases, such as pneumonia, meningitis, and bacteremia. This organism is responsible for more than 10 million deaths annually and is particularly dangerous for newborns and the elderly, as they are less responsive to current anti-pneumococcal vaccines. "We have the opportunity," commented Nickerson, "to utilize spaceflight as a unique research and development platform for novel applications with potential to help fight a globally devastating disease."

Nickerson and Curtiss designed the RASV experiment to use the unique microgravity environment of the space station National Laboratory to increase the vaccine's anti-pneumococcal effectiveness by maximizing its ability to induce a protective immune response. Already a promising oral vaccine candidate that is in human clinical trials, RASV has many advantages over vaccines delivered by a needle. This includes activation of an additional arm of the immune system that cannot be engaged by vaccines that are administered as a shot. The Salmonella vaccine strain is genetically modified not to cause disease in humans, but instead carries an antigenic protein from Streptococcus pneumonia. This addition stimulates a protective immune response without actually causing the disease.

According to Nickerson, the initial clinical trials indicated a need for additional enhancement to the vaccine's ability to induce a potent protective immune response. By sending samples back to the space station for continued microgravity research, scientists hope that they will be able to better genetically engineer the vaccine strain to enhance its immunogenicity, while reducing or eliminating any unwanted side effects.

To accomplish this goal, special growth chambers containing the vaccine strain traveled to the station aboard the shuttle Atlantis, where crew members activated the samples. Scientists simultaneously are growing a control sample on the ground for comparison under otherwise identical conditions. The spaceflight cultured RASV strain returned to Earth with STS-135 on July 21, 2011.

Researchers will now evaluate the space-flown strain against the control sample for its ability to protect against pneumococcal infection and changes in gene expression. Molecular targets identified from this work hold promise for translation to develop new and improve existing anti-pneumococcal RASVs to prevent disease for the general public. Moreover, because RASVs can be produced against a wide variety of human pathogens, the outcome of this study could influence the development of vaccines against many other diseases in addition to pneumonia.

Early work that laid the foundation for the microgravity RASV investigation began in 1998 when Nickerson initially was funded by NASA. This was the first of what would be multiple studies from this team on Salmonella bacteria grown in true microgravity or ground-based analogues of microgravity. The goal was initially to see how the bacteria would respond to a microgravity environment.

The ground study led to 2006's Effect of Spaceflight on Microbial Gene Expression and Virulence or Microbe investigation. The findings for Microbe were surprising, as scientists discovered that Salmonella cultured in the spaceflight environment became more virulent -- meaning there was an increase in its disease-causing potential. This study also showed that spaceflight globally altered Salmonella gene expression in key ways that were not observed during culture on Earth, leading to the identification of a master switch that regulates this response.

The Nickerson team followed Microbe with 2008's Microbial Drug Resistance and Virulence or MDRV investigation. This study both reproduced the increased virulence effect in spaceflight-grown Salmonella and identified a way to turn off the increased virulence. Collectively, these investigations enabled researchers to devise the RASV flight experiment in an effort to develop a better vaccine against pneumonia. "The key to this research is the novel way that bacterial cells adapt and respond to culture in the microgravity environment," said Nickerson, "as they exhibit important biological characteristics that are directly relevant to human health and disease that are not observed using traditional experimental approaches."

The current investigation is not the final chapter in this journey towards vaccine development. Thanks to the recent signing of a Space Act Agreement between NASA and the Biodesign Institute at Arizona State University, Nickerson and her team are now users of the space station as a National Laboratory. Scientists participating in this study plan to fly a continuing series of experiments to the space station. This streamlined access will help to accelerate progress for this lifesaving vaccine.

For more information visit 
useful links: Ferrini Boots, boy suits, Alligator boots

NASA Announces Launch Tweetup for GRAIL Moon Mission

NASA will host a two-day launch Tweetup for 150 of its Twitter followers on Sept. 7-8 at the agency's Kennedy Space Center in Florida. The Tweetup is expected to culminate in the launch of the twin lunar-bound GRAIL spacecraft aboard a Delta II rocket from Cape Canaveral Air Force Station in Florida.

The launch window opens at 5:37 a.m. PDT (8:37 a.m. EDT) on Sept. 8. The two GRAIL spacecraft will fly in tandem orbits around the moon for several months to measure its gravity field, from its crust to core, in unprecedented detail. The mission also will answer longstanding questions about the moon and provide scientists with a better understanding of how Earth and other rocky planets in the solar system formed.

The Tweetup will provide NASA's Twitter followers with the opportunity to tour the Kennedy Space Center Visitor Complex; speak with scientists and engineers from GRAIL and other upcoming missions; and, if all goes as scheduled, view the spacecraft launch. The event also will provide participants the opportunity to meet fellow tweeps and members of NASA's social media team.

2011 is one of the busiest ever in planetary exploration; GRAIL's liftoff is the third of four space missions launching this year under the management of NASA's Jet Propulsion Laboratory in Pasadena, Calif. Aquarius launched June 10 to study ocean salinity; Juno will launch Aug. 5 to study the origins and interior of Jupiter; and the Mars Science Laboratory/Curiosity rover heads to the Red Planet no earlier than Nov. 25.

Tweetup registration opens at 6 a.m. PDT (9 a.m. EDT) on Tuesday, July 26, and closes at 9 a.m. PDT (noon EDT) on Thursday, July 28. NASA will randomly select 150 participants from online registrations

For more information visit 
useful links: Ferrini Boots, boy suits, Alligator boots

Last Picture of Atlantis in Space

Space shuttle Atlantis landed at NASA's Kennedy Space Center, wrapping up the final mission of NASA's space shuttle program. At 08:27:48 UT, just 21 minutes before the deorbit burn, astrophotographer Thierry Legault captured what might be the last picture of Atlantis in space--and it was a solar transit.

For more information visit
useful links: Ferrini Boots, boy suits, Alligator boots

Astronomers Find Largest, Most Distant Reservoir of Water

Two teams of astronomers have discovered the largest and farthest reservoir of water ever detected in the universe. The water, equivalent to 140 trillion times all the water in the world's ocean, surrounds a huge, feeding black hole, called a quasar, more than 12 billion light-years away.

"The environment around this quasar is very unique in that it's producing this huge mass of water," said Matt Bradford, a scientist at NASA's Jet Propulsion Laboratory in Pasadena, Calif. "It's another demonstration that water is pervasive throughout the universe, even at the very earliest times." Bradford leads one of the teams that made the discovery. His team's research is partially funded by NASA and appears in the Astrophysical Journal Letters.

A quasar is powered by an enormous black hole that steadily consumes a surrounding disk of gas and dust. As it eats, the quasar spews out huge amounts of energy. Both groups of astronomers studied a particular quasar called APM 08279+5255, which harbors a black hole 20 billion times more massive than the sun and produces as much energy as a thousand trillion suns.

Astronomers expected water vapor to be present even in the early, distant universe, but had not detected it this far away before. There's water vapor in the Milky Way, although the total amount is 4,000 times less than in the quasar, because most of the Milky Way’s water is frozen in ice.

Water vapor is an important trace gas that reveals the nature of the quasar. In this particular quasar, the water vapor is distributed around the black hole in a gaseous region spanning hundreds of light-years in size (a light-year is about six trillion miles). Its presence indicates that the quasar is bathing the gas in X-rays and infrared radiation, and that the gas is unusually warm and dense by astronomical standards. Although the gas is at a chilly minus 63 degrees Fahrenheit (minus 53 degrees Celsius) and is 300 trillion times less dense than Earth's atmosphere, it's still five times hotter and 10 to 100 times denser than what's typical in galaxies like the Milky Way.

Measurements of the water vapor and of other molecules, such as carbon monoxide, suggest there is enough gas to feed the black hole until it grows to about six times its size. Whether this will happen is not clear, the astronomers say, since some of the gas may end up condensing into stars or might be ejected from the quasar.

Bradford's team made their observations starting in 2008, using an instrument called "Z-Spec" at the California Institute of Technology’s Submillimeter Observatory, a 33-foot (10-meter) telescope near the summit of Mauna Kea in Hawaii. Follow-up observations were made with the Combined Array for Research in Millimeter-Wave Astronomy (CARMA), an array of radio dishes in the Inyo Mountains of Southern California.

The second group, led by Dariusz Lis, senior research associate in physics at Caltech and deputy director of the Caltech Submillimeter Observatory, used the Plateau de Bure Interferometer in the French Alps to find water. In 2010, Lis's team serendipitously detected water in APM 8279+5255, observing one spectral signature. Bradford's team was able to get more information about the water, including its enormous mass, because they detected several spectral signatures of the water.

Other authors on the Bradford paper, "The water vapor spectrum of APM 08279+5255," include Hien Nguyen, Jamie Bock, Jonas Zmuidzinas and Bret Naylor of JPL; Alberto Bolatto of the University of Maryland, College Park; Phillip Maloney, Jason Glenn and Julia Kamenetzky of the University of Colorado, Boulder; James Aguirre, Roxana Lupu and Kimberly Scott of the University of Pennsylvania, Philadelphia; Hideo Matsuhara of the Institute of Space and Astronautical Science in Japan; and Eric Murphy of the Carnegie Institute of Science, Pasadena.

For more information visit
useful links: Ferrini Boots, boy suits, Alligator boots

MAVEN Mission Completes Major Milestone

The Mars Atmosphere and Volatile EvolutioN (MAVEN) mission reached a major milestone last week when it successfully completed its Mission Critical Design Review (CDR).

MAVEN, scheduled for launch in late 2013, will be the first mission devoted to understanding the Martian upper atmosphere. The goal of MAVEN is to determine the history of the loss of atmospheric gases to space through time, providing answers about Mars climate evolution. It will accomplish this by measuring the current rate of escape to space and gathering enough information about the relevant processes to allow extrapolation backward in time.

Noting this milestone, Michael Meyer, Lead Scientist for NASA's Mars Exploration Program at NASA Headquarters said. "It is a real pleasure to see the MAVEN team is doing an exemplary job on this important mission, which was identified as a top priority mission in the 2002 National Research Council Decadal Survey and addresses high-priority goals of two Divisions—Planetary Sciences and Heliophysics."

"Understanding how and why the atmosphere changed through time is an important scientific objective for Mars," said Bruce Jakosky, MAVEN Principal Investigator from the Laboratory for Atmospheric and Space Physics at the University of Colorado (CU/LASP) at Boulder. "MAVEN will make the right measurements to allow us to answer this question. We’re in the middle of the hard work right now—building the instruments and spacecraft—and we’re incredibly excited about the science results we’re going to get from the mission."

From July 11 – 15, 2011, the MAVEN Critical Design Review was held at NASA Goddard Space Flight Center in Greenbelt, Md. An independent review board, comprised of reviewers from NASA and several external organizations, met to validate the system design. Critical Design Reviews are one-time programmatic events that bridge the design and manufacturing stages of a project. A successful review means that the design is validated and will meet its requirements, is backed up with solid analysis and documentation, and has been proven to be safe. MAVEN's CDR completion grants permission to the mission team to begin manufacturing hardware.

"This team continues to nail every major milestone like clockwork, as laid out three years ago when the mission was proposed," said Dave Mitchell, MAVEN Project Manager at NASA Goddard Space Flight Center in Greenbelt, Md. "CDR success is very important because it validates that the team is ready for fabrication, assembly, and test of all mission elements. It also enables us to stay on plan for launch in November 2013."

MAVEN will carry three instrument suites. The Particles and Fields Package, built by the University of California at Berkeley with support from CU/LASP and NASA Goddard, contains six instruments that will characterize the solar wind and the ionosphere of the planet. The Remote Sensing Package, built by CU/LASP, will determine global characteristics of the upper atmosphere and ionosphere. The Neutral Gas and Ion Mass Spectrometer, provided by NASA Goddard, will measure the composition and isotopes of neutral ions.

MAVEN's principal investigator is based at the University of Colorado at Boulder's Laboratory for Atmospheric and Space Physics. The university will provide science operations, build instruments, and lead Education/Public Outreach. Goddard Space Flight Center in Greenbelt, Maryland, will manage the MAVEN mission. Lockheed Martin of Littleton, Colo., will build the spacecraft and perform mission operations. The University of California-Berkeley Space Sciences Laboratory will build instruments for the mission. NASA’s Jet Propulsion Laboratory, Pasadena, Calif., will provide Program management via the Mars Program Office, as well as navigation support, the Deep Space Network, and the Electra telecommunications relay hardware and operations.

useful links: Ferrini Boots, boy suits, Alligator boots
For more information visit

Landsat Satellites Track Continued Missouri River Flooding

Flooding along the Missouri River continues as shown in recent Landsat satellite images of the Nebraska and Iowa border. Heavy rains and snowmelt have caused the river to remain above flood stage for an extended period.

A Landsat 5 image of the area from May 5, 2011 shows normal flow. In contrast, a Landsat 7 image from July 17 depicts flood conditions in the same location.

A national overview map of streamflow provided by U.S. Geological Survey (USGS) WaterWatch graphically portrays the immense geographic extent of flooding in the Missouri River basin.

Monitoring both floods and droughts, the USGS WaterWatch internet site displays maps, graphs, and tables that describe current and past streamflow conditions for the United States. The real-time streamflow data is generally updated on an hourly basis.

The Landsat Program is a series of Earth-observing satellite missions jointly managed by NASA and the U.S. Geological Survey. Landsat satellites have been consistently gathering data about our planet since 1972. They continue to improve and expand this unparalleled record of Earth’s changing landscapes, for the benefit of all. The next Landsat satellite is scheduled to launch in December 2012.

For more information visit
useful links: Ferrini Boots, boy suits, Alligator boots

Yeast Rising to the Space Station

Chefs across the globe may not know it yet, but their baker's yeast just left the kitchen and blasted off into low Earth orbit. Hitching a ride on the space shuttle Atlantis on July 8, 2011, the samples will be grown on the International Space Station as part of the Genotypic and Phenotypic Changes in Yeast Related to Selective Growth Pressures Unique to Microgravity or Micro-4 investigation. Capable of raising more than just breads, this useful organism will help researchers better understand the impact of the space environment on live cells in humans.

This yeast -- S. cerevisiae -- has been of use since the ancient Egyptians first figured out how to harness it for wine and bread making. In modern times it is still used for baking and was the first organism to have its genome fully sequenced. Scientists hope that by studying the changes of yeast in microgravity, they will better understand the changes human cells may experience during long-duration spaceflight. Gaining better knowledge of genetic alterations by studying yeast growth during this microgravity research may also help in understanding how these changes could manifest in human disease here on Earth.

This investigation is a collaboration with BioServe Space Technologies, Durham Veterans Affairs Medical Center, and the University of Toronto. According to Michael Costanzo, Ph.D. and one of the co-investigators for Micro-4 at the University of Toronto, the similarities between human cells and the yeast's genetic makeup makes it ideal for study in space. "We are examining which genes are important for cell growth and survival in a zero gravity environment. The results of our 'yeastnaut' experiments may provide insight into which set of human genes are important and how these genes work together to help organisms/humans deal with extreme environments associated with space travel -- such as zero-gravity and elevated radiation."

Two different sets of experiments will take place as part this study. The first will grow yeast cells in petri dishes using temperature-controlled chambers. On July 12, scientists on the ground remotely changed the temperature from 4° C to 30° C -- the optimal temperature for yeast cell growth -- to activate the on-orbit samples. The cells continue to grow for 48 hours before the temperature is cooled again and the samples are stowed for return to Earth for analysis. The second experiment includes the use of a liquid media to grow the yeast. During the mission, astronauts will transfer the samples to fresh liquid media twice before stowing them, as well.

Both studies will look at how cells adapt to the space environment using the yeast deletion series -- a collection of ≈ 5000 yeast strains, each of which has been deleted for a different gene. In other words, a collection of yeast cells that have been genetically engineered to help scientists to figure out what genes are important for specific responses to microgravity. The goal is to see which strain is best suited to spaceflight, showing researchers which genetic traits are capable of survival in microgravity.

The convenience of yeast as a test subject also provides an important avenue to understanding how living things adapt to space. Due to the small number of humans who have traveled in space, as well as the short duration of their exposure, little is known about the effects of long-term zero gravity on biological systems. "In contrast," said Corey Nislow, Ph.D. and co-investigator from the University of Toronto, "in both our experiments, we have huge sample sizes -- millions of cells -- and they will be monitored for 20 generations, the equivalent of 400 human years."

Control studies will take place on the ground at Kennedy Space Center, Fla. The space shuttle will also carry an identical set of samples to those that will transfer to the space station. These duplicate samples, however, will remain on the shuttle to be "flown, not grown," explained Nislow. Returning to Earth with Atlantis, these duplicate samples will be activated on the ground to investigate growth in tandem timing to those aboard the station.

While the STS-135 mission is the final shuttle flight for NASA, scientists for this study will not have to wait for the certification of new flight vehicles to continue their research. The hardware designed and used for Micro-4 is not limited to the harsh environment of space, but may also find use in Earth-based extremes for future yeast experiments. "It is important to remember that it's fun to fantasize about life in other parts of the solar system, yet we sometimes overlook the fact that life thrives at incredible extremes here on Earth," commented Nislow. "Such as in boiling water around ocean vents, in the polar ice caps, and even in environments so acidic that they would melt metal!"

For more information visit
useful links: Ferrini Boots, boy suits, Alligator boots

Comet Hartley 2 Leaves a Bumpy Trail

New findings from NEOWISE, the asteroid- and comet-hunting portion of NASA's Wide-field Infrared Survey Explorer mission, show that comet Hartley 2 leaves a pebbly trail as it laps the sun, dotted with grains as big as golf balls.

Previously, NASA's EPOXI mission, which flew by the comet on Nov. 4, 2010, found golf ball- to basketball-sized fluffy ice particles streaming off comet Hartley 2. NEOWISE data show that the golf ball-sized chunks survive farther away from the comet than previously known, winding up in Hartley 2's trail of debris. The NEOWISE team determined the size of these particles by looking at how far they deviated from the trail. Larger particles are less likely to be pushed away from the trail by radiation pressure from the sun.

The observations also show that the comet is still actively ejecting carbon dioxide gas at a distance of 2.3 astronomical units from the sun, which is farther away from the sun than where EPOXI detected carbon dioxide jets streaming from the comet. An astronomical unit is the average distance between Earth and the sun.

"We were surprised that carbon dioxide plays a significant role in comet Hartley 2's activity when it's farther away from the sun," said James Bauer, the lead author of a new paper on the result in the Astrophysical Journal. An abstract of the scientific paper is online at, with the option of downloading a full PDF.

JPL manages and operates the Wide-field Infrared Survey Explorer for NASA's Science Mission Directorate, Washington. The principal investigator, Edward Wright, is at UCLA. The mission was competitively selected under NASA's Explorers Program managed by the Goddard Space Flight Center, Greenbelt, Md. The science instrument was built by the Space Dynamics Laboratory, Logan, Utah, and the spacecraft was built by Ball Aerospace & Technologies Corp., Boulder, Colo. Science operations and data processing take place at the Infrared Processing and Analysis Center at the California Institute of Technology in Pasadena. Caltech manages JPL for NASA.

For more information visit
useful links: Ferrini Boots, boy suits, Alligator boots

La Niña's Exit Leaves Climate Forecasts in Limbo

It's what Bill Patzert, a climatologist and oceanographer at NASA's Jet Propulsion Laboratory in Pasadena, Calif., likes to call a "La Nada" – that puzzling period between cycles of the El Niño-Southern Oscillation climate pattern in the Pacific Ocean when sea surface heights in the equatorial Pacific are near average.

The comings and goings of El Niño and La Niña are part of a long-term, evolving state of global climate, for which measurements of sea surface height are a key indicator. For the past three months, since last year's strong La Niña event dissipated, data collected by the U.S.-French Ocean Surface Topography Mission (OSTM)/Jason-2 oceanography satellite have shown that the equatorial Pacific sea surface heights have been stable and near average. Elsewhere, however, the northeastern Pacific Ocean remains quite cool, with sea levels much lower than normal. The presence of cool ocean waters off the U.S. West Coast has also been a factor in this year's cool and foggy spring there.

The current state of the Pacific is shown in this OSTM/Jason-2 image, based on the average of 10 days of data centered on June 18, 2011. The image depicts places where Pacific sea surface height is higher (warmer) than normal as yellow and red, while places where the sea surface is lower (cooler) than normal are shown in blue and purple. Green indicates near-normal conditions. Sea surface height is an indicator of how much of the sun's heat is stored in the upper ocean.

For oceanographers and climate scientists like Patzert, "La Nada" conditions can bring with them a high degree of uncertainty. While some forecasters (targeting the next couple of seasons) have suggested La Nada will bring about "normal" weather conditions, Patzert cautions previous protracted La Nadas have often delivered unruly jet stream patterns and wild weather swings.

In addition, some climatologists are pondering whether a warm El Niño pattern (which often follows La Niña) may be lurking over the horizon. Patzert says that would be perfectly fine for the United States.

"For the United States, there would be some positives to the appearance of El Niño this summer," Patzert said. "The parched and fire-ravaged southern tier of the country would certainly benefit from a good El Niño soaking. Looking ahead to late August and September, El Niño would also tend to dampen the 2011 hurricane season in the United States. We've had enough wild and punishing weather this year. Relief from the drought across the southern United States and a mild hurricane season would be very welcome."

Jason-2 scientists will continue to monitor Pacific Ocean sea surface heights for signs of El Niño, La Niña or prolonged neutral conditions.

For more information visit
useful links: Ferrini Boots, boy suits, Alligator boots

Dark Fireworks on the Sun

On June 7, 2011, Earth-orbiting satellites detected a flash of X-rays coming from the western edge of the solar disk. Registering only "M" (for medium) on the Richter scale of solar flares, the blast at first appeared to be a run-of-the-mill eruption--that is, until researchers looked at the movies.

"We'd never seen anything like it," says Alex Young, a solar physicist at the Goddard Space Flight Center. "Half of the sun appeared to be blowing itself to bits."

"In terms of raw power, this really was just a medium-sized eruption," says Young, "but it had a uniquely dramatic appearance caused by all the inky-dark material. We don't usually see that."

Solar physicist Angelos Vourlidas of the Naval Research Lab in Washington DC calls it a case of "dark fireworks."

"The blast was triggered by an unstable magnetic filament near the sun's surface," he explains. "That filament was loaded down with cool plasma, which exploded in a spray of dark blobs and streamers. "Cool" has a special meaning on the sun: The plasma blobs registered a temperature of 20,000 Kelvin or less. That is relatively cool. Most of the surrounding gas had temperatures between 40,000 K and 1,000,000 K.

The plasma blobs were as big as planets, many larger than Earth. They rose and fell ballistically, moving under the influence of the sun's gravity like balls tossed in the air, exploding "like bombs" when they hit the stellar surface.

Some blobs, however, were more like guided missiles. "In the movies we can see material 'grabbed' by magnetic fields and funneled toward sunspot groups hundreds of thousands of kilometers away," notes Young.

SDO also detected a shadowy shock wave issuing from the blast site. The 'solar tsunami' propagated more than halfway across the sun, visibly shaking filaments and loops of magnetism en route. [91 MB Quicktime] Long-range action has become a key theme of solar physics since SDO was launched in 2010. The observatory frequently sees explosions in one part of the sun affecting other parts. Sometimes one explosion will trigger another ... and another ... with a domino sequence of flares going off all around the star.

"The June 7th blast didn't seem to trigger any big secondary explosions, but it was certainly felt far and wide," says Young.

It's tempting to look at the movies and conclude that most of the exploded material fell back--but that wouldn't be true, according to Vourlidas. "The blast also propelled a significant coronal mass ejection (CME) out of the sun's atmosphere."

He estimates that the cloud massed about 4.5 x1015 grams, placing it in the top 5% of all CMEs recorded in the Space Age. For comparison, the most massive CME ever recorded was 1016 grams, only a factor of ~2 greater than the June 7th cloud. The amount of material that fell back to the sun on June 7 was approximately equal to the amount that flew away, Vourlidas says.

As remarkable as the June 7th eruption seems to be, Young says it might not be so rare. "In fact," he says, "it might be downright common."

Before SDO, space-based observatories observed the sun with relatively slow cadences and/or limited fields of view. They could have easily missed the majesty of such an explosion, catching only a single off-center snapshot at the beginning or end of the blast to hint at what actually happened.

If Young is right, more dark fireworks could be in the offing. Stay tuned.

For more information visit
useful links: Ferrini Boots, boy suits, Alligator boots

Punching Holes in the Sky

Scientists, photographers and amateur cloud watchers have been looking up with wonderment and puzzlement at "hole punch" clouds for decades. Giant, open spaces appear in otherwise continuous cloud cover, presenting beautiful shapes but also an opportunity for scientific investigation. A new paper published last week in Science inquires into how the holes get punched – airplanes are the culprit – and into the potential for the phenomenon's link to increased precipitation around major airports.

"It appears to be a rather widespread effect for aircraft to inadvertently cause some measureable amount of rain or snow as they fly through certain clouds," said lead author Andrew Heymsfield of the National Center for Atmospheric Research, Boulder, Co. "This is not necessarily enough precipitation to affect global climate, but it is likely to be noticeable around major airports in the midlatitudes."

NASA Langley Research Center cloud specialist Patrick Minnis was one of the co-authors on the paper. NASA satellites Aqua, Terra, CALIPSO and CloudSat were used in the analysis. The research was also partly funded by NASA grants.

Picture a layer of supercooled liquid water clouds stretching across the sky, like a sheet, in subfreezing temperatures. An airliner gaining altitude punches through the cloud layer, and leaves behind a void as if by a circular cookie-cutter. In some cases, the shape left behind is more ragged, or even more rectangular or canal-like. But the nearly perfect circle often makes for the most compelling sight in the sky. The ice particles grow at the expense of the supercooled water droplets and fall out of the cloud as snow. If the cloud layer is thin or if the water is not replenished the snow leaves a hole in the cloud.

"In other conditions, it may produce a somewhat continuous snow line," Minnis said, as has been observed around the Denver airport.

Web sites on the Internet are now devoted to collecting pictures of hole punch clouds from around the world. Scientists first reported observing hole punch clouds in the 1940s, according to the Science paper. They often lead to false reports of UFOs or rocket launches. But aside from being a notch in the belt for cloud-watchers, the "mechanisms of formation and the physics of the development, duration, and thus the extent of their effect have largely been ignored." Heymsfield and the other authors studied satellite images of hole punch clouds and then used computer models to simulate how the holes evolved after formation. Whether a plane is climbing or flying level through the cloud layer determines whether a "hole" is "punched" or a "canal" is "dug" through the clouds.

In addition to describing the physics of how planes form the holes in specific cloud types, the Science paper also looks at this "inadvertent" cloud seeding. The authors suggest that the effect is not large enough to have an impact on global climate, but that "regionally near major airports in midlatitudes during cool weather months it may lead to enhanced precipitation at the ground."

For more information visit
useful links: Ferrini Boots, boy suits, Alligator boots

NASA's Hubble Makes One Millionth Science Observation

NASA's Hubble Space Telescope crossed another milestone in its space odyssey of exploration and discovery. On Monday, July 4, the Earth-orbiting observatory logged its one millionth science observation during a search for water in an exoplanet's atmosphere 1,000 light-years away.

"For 21 years Hubble has been the premier space science observatory, astounding us with deeply beautiful imagery and enabling ground-breaking science across a wide spectrum of astronomical disciplines," said NASA Administrator Charles Bolden. He piloted the space shuttle mission that carried Hubble to orbit. "The fact that Hubble met this milestone while studying a faraway planet is a remarkable reminder of its strength and legacy."

Although Hubble is best known for its stunning imagery of the cosmos, the millionth observation is a spectroscopic measurement, where light is divided into its component colors. These color patterns can reveal the chemical composition of cosmic sources.

Hubble's millionth exposure is of the planet HAT-P-7b, a gas giant planet larger than Jupiter orbiting a star hotter than our sun. HAT-P-7b, also known as Kepler 2b, has been studied by NASA's planet-hunting Kepler observatory after it was discovered by ground-based observations. Hubble now is being used to analyze the chemical composition of the planet’s atmosphere.

This is an artist's concept of that planet, HAT-P-7b. It is a "hot Jupiter" class planet orbiting a star that is much hotter than our sun. Hubble Space Telescope's millionth science observation was trained on this planet to look for the presence of water vapor and to study the planet's atmospheric structure via spectroscopy. (Credit: NASA; ESA; G. Bacon, STScI)

"We are looking for the spectral signature of water vapor. This is an extremely precise observation and it will take months of analysis before we have an answer," said Drake Deming of the University of Maryland and NASA's Goddard Space Flight Center in Greenbelt, Md. "Hubble demonstrated it is ideally suited for characterizing the atmospheres of exoplanets, and we are excited to see what this latest targeted world will reveal."

Hubble was launched April 24, 1990, aboard space shuttle's Discovery's STS-31 mission. Its discoveries revolutionized nearly all areas of astronomical research from planetary science to cosmology. The observatory has collected more than 50 terabytes of data to-date. The archive of that data is available to scientists and the public at:


Hubble's odometer reading includes every observation of astronomical targets since its launch and observations used to calibrate its suite of instruments. Hubble made the millionth observation using its Wide Field Camera 3, a visible and infrared light imager with an on-board spectrometer. It was installed by astronauts during the Hubble Servicing Mission 4 in May 2009.

"The Hubble keeps amazing us with groundbreaking science," said Sen. Barbara A. Mikulski, the chairwoman of the Senate Commerce, Justice, Science and Related Agencies Appropriations Subcommittee that funds NASA. "I championed the mission to repair and renew Hubble not just to get one million science observations, but also to inspire millions of children across the planet to become our next generation of stargazers, scientists, astronauts and engineers."

For more information visit
useful links: Ferrini Boots, boy suits, Alligator boots

Plasma Spectrometer Operations on Hold

Mission managers for NASA's Cassini spacecraft suspended operation of the Cassini plasma spectrometer instrument on Tuesday, June 14, 2011, after a series of voltage shifts on the spacecraft. They will determine when the instrument can resume collecting data.

The Cassini spacecraft is designed to operate with a "balanced" voltage source to create a tolerance to short circuits. On May 1, a voltage shift occurred, most likely explained by a short circuit happening somewhere in the system. On June 11, a voltage shift in the opposite direction occurred, indicating an additional short circuit. In both cases, all instruments and engineering subsystems continued to operate properly.

Analysis of telemetry data from the spacecraft by the engineering team pointed to the Cassini plasma spectrometer instrument as the cause of the voltage shifts. The instrument has additional capacitors in the power lines for noise reduction. The concern was that one or more of these capacitors may have short-circuited, which would cause the voltage to shift and explain the observed changes. Although the instrument was operating properly, engineers decided to turn it off as a precaution until the events could be better understood.

The suspension of the plasma spectrometer operations is not expected to affect other science data gathering or navigation. The plan is to resume normal plasma spectrometer operations after further analysis is completed to understand the cause of the issue better.

The Cassini-Huygens mission is a cooperative project of NASA, the European Space Agency and the Italian Space Agency. The Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the mission for NASA's Science Mission Directorate, Washington.

For more information visit
useful links: Ferrini Boots, boy suits, Alligator boots

First iPhone Flying on Last Shuttle

There is at least one first involved with space shuttle Atlantis’ STS-135 mission, a flight notable for its lasts: the crew is taking the first iPhone into space to help with experiments aboard the International Space Station.

A Houston company called Odyssey Space Research developed an application for the Apple smartphone that is meant to help the astronauts track their scientific results and perhaps one day aid navigation. The device will be housed inside a small research platform built by NanoRacks. The platform will be placed inside the station.

The app, called SpaceLab for iOS, is even available to Earthbound smartphone users to perform the same experiments with the software simulating microgravity.

According to the company, the software was designed with the iPhone's unique attributes in mind, such as the gyro, accelerometer, cameras and chip.

Atlantis is to launch July 8 from NASA's Kennedy Space Center in Florida on a mission to deliver supplies and experiments to the space station.

Along with the first iPhone, the crew of Atlantis is bringing along numerous items commemorating what will be the final mission of Space Shuttle Program. For instance, a flag from the first shuttle flight in 1981 will be carried to the station and left there until the first commercial spaceflight to the station, when NASA astronauts will retrieve it. The astronauts, Commander Chris Ferguson, Pilot Doug Hurley and Mission Specialists Sandy Magnus and Rex Walheim, have allocated a number of unique items that will become commemoratives for numerous organizations after they return to Earth.

For example, American flags from the Delaware Valley Historic Aircraft Association, Key Peninsula Middle School in Lake Bay, Washington, and a fire station in Houston are to orbit the Earth for 12 days before being handed over to their sponsors as symbols of inspiration.

The U.S. Honor Flag also will fly aboard Atlantis. Begun as a tribute following the Sept. 11, 2001, terrorists' attacks, the American flag serves as a traveling memorial to heroes who lost their lives while serving their communities and country.

Among the unusual things headed into space is a recipe card from one of the dishes served at Astronaut Crew Quarters at NASA's Kennedy Space Center in Florida.

NASCAR is well-represented on the mission with a cap from Joe Gibbs Racing and black flags from Texas Motor Speedway and the NASCAR organization on the roster of items.

More than 500 STS-135 mission patches are tucked inside Atlantis for the flight, a common take-along for all shuttle missions, along with 800 small American flags that typically are handed out after a mission as awards and recognitions.
When the crew returns, the items will be unpacked from lockers inside the shuttle and returned to the astronauts who often make personal visits to hand them back to their owners.

The custom of carrying mementoes into space began in the days of the Mercury missions, when an astronaut would take a roll of coins or some other small tokens into space. The Apollo astronauts carried items to the moon and back during their missions.

The tradition is not expected to end with the end of the shuttle program. When SpaceX launched its Dragon capsule last year, for instance, it carried commemorative items inside, most notably a wedge of cheese.

The items taken and returned from space rest in schools, museums and facilities all over the world and are often prominently displayed to inspire people to think of the adventures they might one day take themselves.

For more information visit
useful links: Ferrini Boots, boy suits, Alligator boots

Small Asteroid to Whip Past Earth on June 27, 2011

Near-Earth asteroid 2011 MD will pass only 12,000 kilometers (7,500 miles) above the Earth's surface on Monday June 27 at about 9:30 EDT. The asteroid was discovered by the LINEAR near-Earth object discovery team observing from Socorro, New Mexico. This small asteroid, only 5-20 meters in diameter, is in a very Earth-like orbit about the Sun, but an orbital analysis indicates there is no chance it will actually strike Earth on Monday. If a rocky asteroid the size of 2011 MD were to enter Earth's atmosphere, it would be expected to burn up high in the atmosphere and cause no damage to Earth's surface. The accompanying diagram gives a view of the asteroid's trajectory from the general direction of the Sun. This view indicates that 2011 MD will reach its closest Earth approach point in extreme southern latitudes (in fact over the southern Atlantic Ocean). The incoming trajectory leg passes several thousand kilometers outside the geosynchronous ring of satellites and the outgoing leg passes well inside the ring. One would expect an object of this size to come this close to Earth about every 6 years on average. For a brief time, it may be bright enough to be seen even with a modest-sized telescope.

For more information visit
useful links: Ferrini Boots, boy suits, Alligator boots