Florida- A vacation to go


If you are the kind of person who enjoys being swept by the cool breeze of wind, while you are dozing off in a chaise longue on the golden sands of a beautiful beach and love to watch the blue sky dipping into the deep blue sea, then traveler you got to visit Florida. Florida is the much famed sunshine state but what makes it the great holiday destination is the fact that it can live up to the hype given by the tourists. Florida has a lot of places that travelers would love to see be it beaches, theme parks, museums and many more places that tourists would die to go for. Each beach in Florida has its own specialty, if you would like to row a boat in the peaceful seas then you got to try Dania beach or crescent beach. For the party animals you have to visit Miami Beach and south beach to experience night life at its heights.  You will be in for good diving adventures when you visit Panama City beach, experience the underwater world of scuba diving, snorkeling etc here.


Don’t spend all your vacation at the beaches alone, there are some great theme parks in Florida like the Disneyworld theme park, it consist of a number of divisions like the magic kingdom, animal kingdom, Epcot and more. Universal is another theme park which has a lot of rides and attractions. There are a number of theme parks which are down the pipeline too, so you will be pleasantly surprised with a new attraction every year. Do visit Florida and enjoy your vacation booking one of the Florida villas or Orlando villas. Book a Florida villa now.

useful links: Ferrini Boots, boy suits, Alligator boots

NASA Moon Mission in Final Preparations for September Launch


NASA's Gravity Recovery And Interior Laboratory (GRAIL) mission to study the moon is in final launch preparations for a scheduled Sept. 8 launch from Cape Canaveral Air Force Station in Florida.

GRAIL's twin spacecraft are tasked for a nine-month mission to explore Earth's nearest neighbor in unprecedented detail. They will determine the structure of the lunar interior from crust to core and advance our understanding of the thermal evolution of the moon.

"Yesterday's final encapsulation of the spacecraft is an important mission milestone," said David Lehman, GRAIL project manager for NASA's Jet Propulsion Laboratory in Pasadena, Calif. "Our two spacecraft are now sitting comfortably inside the payload fairing which will protect them during ascent. Next time the GRAIL twins will see the light of day, they will be about 95 miles up and accelerating."

The spacecraft twins, GRAIL-A and GRAIL-B, will fly aboard a Delta II rocket launched from Florida. The twins' circuitous route to lunar orbit will take 3.5 months and cover approximately 2.6 million miles (4.2 million kilometers) for GRAIL-A, and 2.7 million miles (4.3 million kilometers) for GRAIL-B.

In lunar orbit, the spacecraft will transmit radio signals precisely defining the distance between them. Regional gravitational differences on the moon are expected to expand and contract that distance.

GRAIL scientists will use these accurate measurements to define the moon's gravity field. The data will allow mission scientists to understand what goes on below the surface of our natural satellite.

"GRAIL will unlock lunar mysteries and help us understand how the moon, Earth and other rocky planets evolved as well," said Maria Zuber, GRAIL principal investigator from the Massachusetts Institute of Technology in Cambridge.

GRAIL's launch period opens Sept. 8 and extends through Oct. 19. On each day, there are two separate launch opportunities separated by approximately 39 minutes. On Sept. 8, the first launch opportunity is 8:37 a.m. EDT (5:37 a.m. PDT); the second is 9:16 a.m. EDT (6:16 a.m. PDT).

Sunspot Breakthrough


Imagine forecasting a hurricane in Miami weeks before the storm was even a swirl of clouds off the coast of Africa—or predicting a tornado in Kansas from the flutter of a butterfly's wing in Texas. These are the kind of forecasts meteorologists can only dream about.

Could the dream come true? A new study by Stanford researchers suggests that such forecasts may one day be possible—not on Earth, but on the sun.

"We have learned to detect sunspots before they are visible to the human eye," says Stathis Ilonidis, a PhD student at Stanford University. "This could lead to significant advances in space weather forecasting."

Sunspots are the "butterfly's wings" of solar storms. Visible to the human eye as dark blemishes on the solar disk, sunspots are the starting points of explosive flares and coronal mass ejections (CMEs) that sometimes hit our planet 93 million miles away. Consequences range from Northern Lights to radio blackouts to power outages.

Astronomers have been studying sunspots for more than 400 years, and they have pieced together their basic characteristics: Sunspots are planet-sized islands of magnetism that float in solar plasma. Although the details are still debated, researchers generally agree that sunspots are born deep inside the sun via the action of the sun’s inner magnetic dynamo. From there they bob to the top, carried upward by magnetic buoyancy; a sunspot emerging at the stellar surface is a bit like a submarine emerging from the ocean depths.

In the August 19th issue of Science, Ilonidis and co-workers Junwei Zhao and Alexander Kosovichev announced that they can see some sunspots while they are still submerged.

Their analysis technique is called "time-distance helioseismology," and it is similar to an approach widely used in earthquake studies. Just as seismic waves traveling through the body of Earth reveal what is inside the planet, acoustic waves traveling through the body of the sun can reveal what is inside the star. Fortunately for helioseismologists, the sun has acoustic waves in abundance. The body of the sun is literally roaring with turbulent boiling motions. This sets the stage for early detection of sunspots.

"We can't actually hear these sounds across the gulf of space," explains Ilonidis, "but we can see the vibrations they make on the sun's surface." Instruments onboard two spacecraft, the venerable Solar and Heliospheric Observatory (SOHO) and the newer Solar Dynamics Observatory (SDO) constantly monitor the sun for acoustic activity.

Submerged sunspots have a detectable effect on the sun's inner acoustics—namely, sound waves travel faster through a sunspot than through the surrounding plasma. A big sunspot can leapfrog an acoustic wave by 12 to 16 seconds. "By measuring these time differences, we can find the hidden sunspot."

Ilonidis says the technique seems to be most sensitive to sunspots located about 60,000 km beneath the sun’s surface. The team isn't sure why that is "the magic distance," but it's a good distance because it gives them as much as two days advance notice that a spot is about to reach the surface.

"This is the first time anyone has been able to point to a blank patch of sun and say 'a sunspot is about to appear right there,'" says Ilonidis's thesis advisor Prof. Phil Scherrer of the Stanford Physics Department. "It's a big advance."

"There are limits to the technique," cautions Ilonidis. "We can say that a big sunspot is coming, but we cannot yet predict if a particular sunspot will produce an Earth-directed flare."

So far they have detected five emerging sunspots—four with SOHO and one with SDO. Of those five, two went on to produce X-class flares, the most powerful kind of solar explosion. This encourages the team to believe their technique can make a positive contribution to space weather forecasting. Because helioseismology is computationally intensive, regular monitoring of the whole sun is not yet possible—"we don’t have enough CPU cycles," says Ilonidis —but he believes it is just a matter of time before refinements in their algorithm allow routine detection of hidden sunspots.

For more information visit http://www.nasa.gov/mission_pages/sunearth/news/sunspot-breakthru.html
useful links: Ferrini Boots, boy suits, Alligator boots

Aerogels: Thinner, Lighter, Stronger


Picture preparing a bowl full of a sweet, gelatin dessert. The gelatin powder is mixed with hot water, and then the mixture is cooled in a refrigerator until it sets. It is now a gel. If that wiggly gel were placed in an oven and all of the moisture dried out of it, all that would be left would be a pile of powder.

But imagine if the dried gelatin maintained its shape, even after the liquid had been removed. The structure of the gel would remain, but it would be extremely light due to low density. This is precisely how aerogels are made.

Aerogels are among the lightest solid materials known to man. They are created by combining a polymer with a solvent to form a gel, and then removing the liquid from the gel and replacing it with air. Aerogels are extremely porous and very low in density. They are solid to the touch. This translucent material is considered one of the finest insulation materials available.

Although aerogels were first invented in the 1930s, NASA's Glenn Research Center in Cleveland has invented groundbreaking methods of creating new types of aerogels that could change the way we think about insulation.

Aerogels' Porous Materials

Since their invention, aerogels have primarily been made of silica. The silica is combined with a solvent to create a gel. This gel is then subjected to supercritical fluid extraction. This supercritical fluid extraction involves introducing liquid carbon dioxide into the gel. The carbon dioxide surpasses its super critical point, where it can be either a gas or a liquid, and then is vented out. This exchange is performed multiple times to ensure that all liquids are removed from the gel. The resulting material is aerogel.

"That is the key step that makes an aerogel different from other porous materials," says Mary Ann Meador, a research chemical engineer and team lead for aerogels at Glenn. "Maintaining the gel structure is the most important thing."

Aerogels provide very effective insulation, because they are extremely porous and the pores are in the nanometer range. The nano pores aren't visible to the human eye. The existence of these pores makes the aerogel so adept at insulating.

"The pores are so small, and gas phase heat conduction is very poor," Meador says. "Molecules of air cannot travel through the aerogel, so there is poor heat transfer through the material."

Traditional silica-based aerogels have been successfully used in many applications, such as providing insulation on a Mars Rover. They have also been used in many commercial products. When aerogels are used for commercial purposes, they are typically in pellet form or in a composite with other materials. Aerogels have been combined with batting to create insulating "blankets," as well as filled in between panes of glass to create translucent panels for day-lighting applications.

Silica-based aerogels are very light, as they are about 95% porous. Silica aerogels are very useful, but they have limitations—they are very fragile.

Aerogel Innovations

NASA, along with industry partners, has investigated the use of different types of aerogels for multiple uses. With funding from NASA's Fundamental Aeronautics Program (Hypersonics and Subsonic Fixed Wing Projects) and the Exploration Systems Mission Directorate, NASA's Glenn Research Center has developed two cutting-edge methodologies that revolutionize aerogel technology.

The first innovation is a method of creating aerogels that are reinforced by polymers. The method changes the surface of the gel as it reacts with a polymer. The result is that the interior surface of the aerogel gets a thin layer of polymer, which greatly strengthens the aerogel.

"If you were to compare a polymer-enforced silica aerogel with the same density silica gel, the polymer enforced aerogel is about two orders of magnitude stronger," Meador says.

These polymer-enhanced aerogels offer the same insulation properties as typical aerogels and can be translucent. They share the same positive attributes of silica aerogels, and are much less fragile. The Glenn team has created many different aerogels featuring different polymers using their patented method. Glenn has also collaborated with Aspen Aerogel of Northborough, Mass. to create a polymer-enhanced aerogel that was combined with fibers to create a new product.

The second innovation is a method of creating aerogels made completely of polymers. These polymer-based aerogels are extremely strong and flexible. They can also be made into a bendable thin film.

Aerogels in Flight

The Glenn team is currently working on a NASA project called the Hypersonic Inflatable Aerodynamic Decelerator (HIAD). The HIAD is an inflatable reentry vehicle that is folded and stowed inside a launch vehicle. Prior to entering the atmosphere, the HIAD is inflated and becomes rigid. This helps the spacecraft slow down, safely descend and land on Earth, Mars, or any other planet that has an atmosphere.

The HIAD enables larger masses to be carried through the atmosphere more slowly and safely, and it reduces the heat to which the vehicle is subjected. The HIAD is covered by a Flexible Thermal Protection System, which uses aerogels as an insulator to protect the payload.

The thin film polymer-based aerogel is well suited to the needs of the HIAD. The HIAD (funded by the Hypersonics Project of the Fundamental Aeronautics Program) is scheduled to flight test in 2012. An important component will be the Flexible Thermal Protection Systems (funded by the Hypersonics Project and the Space Technology Program under the NASA Chief Technologist). The Flexible Thermal Protection Systems use baseline aerogel insulation blankets, created by Aspen Aerogels. Subsequent test launches may include the new thin film polymer-based aerogel as an improvement over the baseline insulation.

"The project would like an aerogel that is more flexible, more foldable and doesn't dust, doesn't shed insulation particles, so it is not a hazard or messy to handle. In response to that, we started looking at different kinds of polymers and techniques that could make that sort of aerogel more flexible," Meador says.

The team determined that the presence of silica in an aerogel precluded the ability of an aerogel to be flexible, so they started exploring ways to create an aerogel made completely with polymers. They developed a method of creating polymer based aerogels that are completely flexible, and can be made into an extremely thin film—a capability not previous available. These aerogels are also stable even when subjected to high temperatures.

The polymer-based aerogel is 85-95% porous, meaning it offers the same advantages of traditional aerogels. It is equally light in weight, and has the same properties of thermal conductivity as silica based aerogels. But these aerogels offer unprecedented flexibility, along with their durability and strength, and the ability to be made into a thin film.

"I was amazed and surprised when we determined it could be made into a flexible thin film," Meador says. "It was a 'whoa' moment! It was better than we expected."

Aerogel Applications

The thin films, which are fabricated through a collaboration with the University of Akron in Akron, Ohio, have also been sent to other government agencies and NASA centers, which has garnered interest in the technology.

"Usually when people see them, they say 'Wow, this is an aerogel?'" Meador says.

Other NASA centers have expressed interest in further exploring these thin polymer aerogels, for applications like cryogenics or in the next space suit. Polymer aerogels are ideally suited for use in a vacuum, like in space, as well as in different gravity scenarios, such as the moon or other planets.

Governmental agencies are also interested in exploring the thin polymer aerogels for use in shelter applications, such as insulated tents. Industry has also taken notice, with possible applications in refrigeration, building and construction, updating historical structures, and many other insulation needs, especially when there isn't a lot of room and smaller, more effective insulation is needed.

Aerogels and the Future

Polymer-enhanced aerogels and polymer-based aerogels have numerous potential applications, both in space, on distant planets and on our own Earth. They are light, durable and extremely effective at insulating and preventing heat transfer. NASA has taken aerogels to the next level, beyond what was previously imagined, and uncovered a world of possibilities for this versatile material.

For more information visit http://www.nasa.gov/topics/technology/features/aerogels.html
useful links: Ferrini Boots, boy suits, Alligator boots

New Rover Snapshots Capture Endeavour Crater Vistas

NASA's Mars Exploration Rover Opportunity has captured new images of intriguing Martian terrain from a small crater near the rim of the large Endeavour crater. The rover arrived at the 13-mile-diameter (21-kilometer-diameter) Endeavour on Aug. 9, after a journey of almost three years.

Opportunity is now examining the ejected material from the small crater, named "Odyssey." The rover is approaching a large block of ejecta for investigation with tools on the rover's robotic arm.

Opportunity and Spirit completed their three-month prime missions on Mars in April 2004. Both rovers continued for years of bonus, extended missions. Both have made important discoveries about wet environments on ancient Mars that may have been favorable for supporting microbial life. Spirit ended communications in March 2010.

For more information visit http://www.nasa.gov/mission_pages/mer/news/mer20110819.html
useful links: Ferrini Boots, boy suits, Alligator boots

A Cosmic Inkblot Test

If this were an inkblot test, you might see a bow tie or a butterfly depending on your personality. An astronomer would likely see the remains of a dying star scattered about space -- precisely what this is. NASA's Spitzer Space Telescope captured this infrared view of what's called a planetary nebula, which is a cloud of material expelled by a burnt out star, called a white dwarf. This object is named the Dumbbell nebula after its resemblance to the exercise equipment in visible-light views.

"It is interesting how different Spitzer's view of the Dumbbell looks compared to optical images," said Dr. Joseph Hora, the principal investigator of the observations from the Harvard Smithsonian Center for Astrophysics, Cambridge, Mass.

In Spitzer's infrared view, the diffuse green glow, which is brightest near the center, is probably from hot gas atoms being heated by the ultraviolet light from the central white dwarf. A collection of clumps fill the central part of the nebula, and red-colored radial spokes extend well beyond. Astronomers think these features represent molecules of hydrogen gas, mixed with traces of heavier elements. Despite being broken apart by the ultraviolet light from the central white dwarf, much of this molecular material may survive intact and mix back into interstellar gas clouds, helping to fuel the next generation of stars.

For more information visit http://www.nasa.gov/mission_pages/spitzer/news/spitzer20110810.html
useful links: Ferrini Boots, boy suits, Alligator boots

Space Storm Tracked from Sun to Earth


For the first time, a spacecraft far from Earth has turned and watched a solar storm engulf our planet. The movie, released today during a NASA press conference, has galvanized solar physicists, who say it could lead to important advances in space weather forecasting.

"The movie sent chills down my spine," says Craig DeForest of the Southwest Researcher Institute in Boulder, Colorado. "It shows a CME swelling into an enormous wall of plasma and then washing over the tiny blue speck of Earth where we live. I felt very small."

CMEs are billion-ton clouds of solar plasma launched by the same explosions that spark solar flares. When they sweep past our planet, they can cause auroras, radiation storms, and in extreme cases power outages. Tracking these clouds and predicting their arrival is an important part of space weather forecasting.

"We have seen CMEs before, but never quite like this," says Lika Guhathakurta, program scientist for the STEREO mission at NASA headquarters. "STEREO-A has given us a new view of solar storms."

STEREO-A is one of two spacecraft launched in 2006 to observe solar activity from widely-spaced locations. At the time of the storm, STEREO-A was more than 65 million miles from Earth, giving it the "big picture" view other spacecraft in Earth orbit lack.

When CMEs first leave the sun, they are bright and easy to see. Visibility is quickly reduced, however, as the clouds expand into the void. By the time a typical CME crosses the orbit of Venus, it is a billion times fainter than the surface of the full Moon, and more than a thousand times fainter than the Milky Way. CMEs that reach Earth are almost as gossamer as vacuum itself and correspondingly transparent.

"Pulling these faint clouds out of the confusion of starlight and interplanetary dust has been an enormous challenge," says DeForest.

Indeed, it took almost three years for his team to learn how to do it. Footage of the storm released today was recorded back in December 2008, and they have been working on it ever since. Now that the technique has been perfected, it can be applied on a regular basis without such a long delay.

Alysha Reinard of NOAA's Space Weather Prediction Center explains the benefits for space weather forecasting:

"Until quite recently, spacecraft could see CMEs only when they were still quite close to the sun. By calculating a CME's speed during this brief period, we were able to estimate when it would reach Earth. After the first few hours, however, the CME would leave this field of view and after that we were 'in the dark' about its progress."

"The ability to track a cloud continuously from the Sun to Earth is a big improvement," she continues. "In the past, our very best predictions of CME arrival times had uncertainties of plus or minus 4 hours," she continues. "The kind of movies we've seen today could significantly reduce the error bars."

The movies pinpoint not only the arrival time of the CME, but also its mass. From the brightness of the cloud, researchers can calculate the gas density with impressive precision. Their results for the Dec. 2008 event agreed with actual in situ measurements at the few percent level. When this technique is applied to future storms, forecasters will be able to estimate its impact with greater confidence.

At the press conference, DeForest pointed out some of the movie's highlights: When the CME first left the sun, it was cavernous, with walls of magnetism encircling a cloud of low-density gas. As the CME crossed the Sun-Earth divide, however, its shape changed. The CME "snow-plowed" through the solar wind, scooping up material to form a towering wall of plasma. By the time the CME reached Earth, its forward wall was sagging inward under the weight of accumulated gas.

The kind of magnetic transformations revealed by the movie deeply impressed Guhathakurta: "I have always thought that in heliophysics understanding the magnetic field is equivalent to the 'dark energy' problem of astrophysics. Often, we cannot see the magnetic field, yet it orchestrates almost everything. These images from STEREO give us a real sense of what the underlying magnetic field is doing."

All of the speakers at today's press event stressed that the images go beyond the understanding of a single event. The inner physics of CMEs have been laid bare for the first time -- a development that will profoundly shape theoretical models and computer-generated forecasts of CMEs for many years to come.

"This is what the STEREO mission was launched to do," concludes Guhathakurta, "and it is terrific to see it live up to that promise."

For more information visit http://www.nasa.gov/mission_pages/stereo/news/solarstorm-tracking.html
useful links: Ferrini Boots, boy suits, Alligator boots

NASA Researchers: DNA Building Blocks Can Be Made in Space

NASA-funded researchers have evidence that some building blocks of DNA, the molecule that carries the genetic instructions for life, found in meteorites were likely created in space. The research gives support to the theory that a "kit" of ready-made parts created in space and delivered to Earth by meteorite and comet impacts assisted the origin of life.

"People have been discovering components of DNA in meteorites since the 1960's, but researchers were unsure whether they were really created in space or if instead they came from contamination by terrestrial life," said Dr. Michael Callahan of NASA's Goddard Space Flight Center, Greenbelt, Md. "For the first time, we have three lines of evidence that together give us confidence these DNA building blocks actually were created in space." Callahan is lead author of a paper on the discovery appearing in Proceedings of the National Academy of Sciences of the United States of America.

The discovery adds to a growing body of evidence that the chemistry inside asteroids and comets is capable of making building blocks of essential biological molecules. For example, previously, these scientists at the Goddard Astrobiology Analytical Laboratory have found amino acids in samples of comet Wild 2 from NASA’s Stardust mission, and in various carbon-rich meteorites. Amino acids are used to make proteins, the workhorse molecules of life, used in everything from structures like hair to enzymes, the catalysts that speed up or regulate chemical reactions.

In the new work, the Goddard team ground up samples of twelve carbon-rich meteorites, nine of which were recovered from Antarctica. They extracted each sample with a solution of formic acid and ran them through a liquid chromatograph, an instrument that separates a mixture of compounds. They further analyzed the samples with a mass spectrometer, which helps determine the chemical structure of compounds.

The team found adenine and guanine, which are components of DNA called nucleobases, as well as hypoxanthine and xanthine. DNA resembles a spiral ladder; adenine and guanine connect with two other nucleobases to form the rungs of the ladder. They are part of the code that tells the cellular machinery which proteins to make. Hypoxanthine and xanthine are not found in DNA, but are used in other biological processes.

Also, in two of the meteorites, the team discovered for the first time trace amounts of three molecules related to nucleobases: purine, 2,6-diaminopurine, and 6,8-diaminopurine; the latter two almost never used in biology. These compounds have the same core molecule as nucleobases but with a structure added or removed.

It's these nucleobase-related molecules, called nucleobase analogs, which provide the first piece of evidence that the compounds in the meteorites came from space and not terrestrial contamination. "You would not expect to see these nucleobase analogs if contamination from terrestrial life was the source, because they're not used in biology, aside from one report of 2,6-diaminopurine occurring in a virus (cyanophage S-2L)," said Callahan. "However, if asteroids are behaving like chemical 'factories' cranking out prebiotic material, you would expect them to produce many variants of nucleobases, not just the biological ones, due to the wide variety of ingredients and conditions in each asteroid."

The second piece of evidence involved research to further rule out the possibility of terrestrial contamination as a source of these molecules. The team also analyzed an eight-kilogram (17.64-pound) sample of ice from Antarctica, where most of the meteorites in the study were found, with the same methods used on the meteorites. The amounts of the two nucleobases, plus hypoxanthine and xanthine, found in the ice were much lower -- parts per trillion -- than in the meteorites, where they were generally present at several parts per billion. More significantly, none of the nucleobase analogs were detected in the ice sample. One of the meteorites with nucleobase analog molecules fell in Australia, and the team also analyzed a soil sample collected near the fall site. As with the ice sample, the soil sample had none of the nucleobase analog molecules present in the meteorite.

Thirdly, the team found these nucleobases -- both the biological and non-biological ones -- were produced in a completely non-biological reaction. "In the lab, an identical suite of nucleobases and nucleobase analogs were generated in non-biological chemical reactions containing hydrogen cyanide, ammonia, and water. This provides a plausible mechanism for their synthesis in the asteroid parent bodies, and supports the notion that they are extraterrestrial," says Callahan.

"In fact, there seems to be a 'goldilocks' class of meteorite, the so-called CM2 meteorites, where conditions are just right to make more of these molecules," adds Callahan.

For more information visit http://www.nasa.gov/topics/solarsystem/features/dna-meteorites.html
useful links: Ferrini Boots, boy suits, Alligator boots

Calm and cool beach waters with San Francisco holidays

If you are looking for a place where you can get the feel of present comfort in adding up to natural freshness then here is your answer San Francisco. It is a super idea to experience the all in one that is the aquatic activities, calm and novelty, you should spend some time at the beaches of San Francisco staying in a beach rental home. Here are the few places to enjoy your desired feel.

Ocean Beach


Ocean Beach is the foremost pleasant beach in San Francisco. If you are fed up with the hectic city life and desiring for a break to sooth your soul and find a new relation with the nature, you should visit this beach. The best part of this Beach is it is located in the city and there’s no need of a long travel. For adventure seekers, In the San Francisco city Ocean Beach is the best surfing place. This is one of the main surfing spot in the city. The beach features unbelievable combination of surf, sand and sun.

Aquatic Park


Aquatic Park is an urban beach located in the center of city. It is the highlight of the San Francisco tourism because of its nearness to city's major attractions such as Ghirardelli Square and Fisherman's Wharf. Apart from serene atmosphere and spectacular sunsets, the beach is also famous for Ghirardelli Sundae and sourdough bread bowl filled with clam broth.

Baker Beach


Baker Beach has a half mile long stretch of fine powdery sand. The specialty of the beach is you are allowed for a nude beach for this you need to take some time from your San Francisco holidays and visit the northern section of the beach. There are many small activities like swimming, surfing and ocean-side kite flying that you can enjoy in the waters of Baker Beach.

useful links: Ferrini Boots, boy suits, Alligator boots

Unusual Fault Pattern Surfaces in Earthquake Study

Like scars that remain on the skin long after a wound has healed, earthquake fault lines can be traced on Earth's surface long after their initial rupture. Typically, this line of intersection is more complicated at the surface than at depth. But a new study of the April 4, 2010, El Mayor–Cucapah earthquake in Baja California, Mexico, reveals a reversal of this trend. Superficially, the fault involved in the magnitude 7.2 earthquake appeared to be straight, but at depth, it’s warped and complicated.

The study, which was led by researchers at the California Institute of Technology with NASA Jet Propulsion Laboratory geophysicist Eric Fielding serving as a coauthor, is available online in the journal Nature Geoscience.

In a standard model, transform plate boundary structures -- where two plates slide past one another -- tend to be vertically oriented, which allows for lateral side-by-side shear fault motion. However, as the study found, the 75 mile (120 kilometer) long El Mayor–Cucapah rupture involved angled, non-vertical faults and the event began on a connecting extension fault between the two segments.

The new analysis indicates the responsible fault is more segmented deep down than its straight surface trace suggests. This means the evolution and extent of this earthquake's rupture could not have been accurately anticipated from the surface geology alone, says the study’s lead author Shengji Wei. Anticipating the characteristics of earthquakes that would likely happen on young fault systems (like the event in the study) is a challenge, since the geologic structures involved in the new fault systems are not clear enough.

Jean-Philippe Avouac, director of Caltech's Tectonics Observatory and principal investigator on the study, says the data can be used to illustrate the process by which the plate boundary -- which separates the Pacific Plate from North America -- evolves and starts connecting the Gulf of California to the Elsinore fault in Southern California.

Sun Unleashes X6.9 Class Flare

On August 9, 2011 at 3:48 a.m. EDT, the sun emitted an Earth-directed X6.9 flare, as measured by the NOAA GOES satellite. These gigantic bursts of radiation cannot pass through Earth's atmosphere to harm humans on the ground, however they can disrupt the atmosphere and disrupt GPS and communications signals. In this case, it appears the flare is strong enough to potentially cause some radio communication blackouts. It also produced increased solar energetic proton radiation -- enough to affect humans in space if they do not protect themselves.

There was also a coronal mass ejection (CME) associated with this flare. CMEs are another solar phenomenon that can send solar particles into space and affect electronic systems in satellites and on Earth. However, this CME is not traveling toward and Earth so no Earth-bound effects are expected.

NASA's Dawn Spacecraft Begins Science Orbits of Vesta

NASA's Dawn spacecraft, the first ever to orbit an object in the main asteroid belt, is spiraling towards its first of four intensive science orbits. That initial orbit of the rocky world Vesta begins Aug. 11, at an altitude of nearly 1,700 miles (2,700 kilometers) and will provide in-depth analysis of the asteroid. Vesta is the brightest object in the asteroid belt as seen from Earth and is thought to be the source of a large number of meteorites that fall to Earth.

The Dawn team unveiled the first full-frame image of Vesta taken on July 24:

http://www.nasa.gov/mission_pages/dawn/multimedia/pia14317.html

This image was taken at a distance of 3,200 miles (5,200 kilometers). Images from Dawn's framing camera, taken for navigation purposes and as preparation for scientific observations, are revealing the first surface details of the giant asteroid. These images go all the way around Vesta, since the giant asteroid turns on its axis once every five hours and 20 minutes.

"Now that we are in orbit around one of the last unexplored worlds in the inner solar system, we can see that it's a unique and fascinating place," said Marc Rayman, Dawn's chief engineer and mission manager at NASA's Jet Propulsion Laboratory in Pasadena, Calif.

After traveling nearly four years and 1.7 billion miles (2.8 billion kilometers), Dawn has been captured by Vesta's gravity, and there currently are 1,800 miles (2,900 kilometers) between the asteroid and the spacecraft. The giant asteroid and its new neighbor are approximately 114 million miles (184 million kilometers) away from Earth.

"We have been calling Vesta the smallest terrestrial planet," said Chris Russell, Dawn's principal investigator at UCLA. "The latest imagery provides much justification for our expectations. They show that a variety of processes were once at work on the surface of Vesta and provide extensive evidence for Vesta's planetary aspirations."

Engineers still are working to determine the exact time that Dawn entered Vesta's orbit, but the team has reported an approximate orbit insertion time of 9:47 p.m. PDT on July 15 (12:47 a.m. EDT on July 16).

In addition to the framing camera, Dawn's instruments include the gamma ray and neutron detector and the visible and infrared mapping spectrometer. The gamma ray and neutron detector uses 21 sensors with a very wide field of view to measure the energy of subatomic particles emitted by the elements in the upper yard (meter) of the asteroid's surface. The visible and infrared mapping spectrometer will measure the surface mineralogy of both Vesta and Dawn's next target, the dwarf planet Ceres. The spectrometer is a modification of a similar one flying on the European Space Agency's Rosetta and Venus Express missions.

Dawn also will make another set of scientific measurements at Vesta and Ceres using the spacecraft's radio transmitter in tandem with sensitive antennas on Earth. Scientists will monitor signals from Dawn and later Ceres to detect subtle variations in the objects' gravity fields. These variations will provide clues about the interior structure of these bodies by studying the mass distributed in each gravity field.

"The new observations of Vesta are an inspirational reminder of the wonders unveiled through ongoing exploration of our solar system," said Jim Green, planetary division director at NASA Headquarters in Washington.

Dawn launched in September 2007. Following a year at Vesta, the spacecraft will depart in July 2012 for Ceres, where it will arrive in 2015. Dawn's mission to Vesta and Ceres is managed by JPL for NASA's Science Mission Directorate in Washington. JPL is a division of the California Institute of Technology in Pasadena. Dawn is a project of the directorate's Discovery Program, managed by NASA's Marshall Space Flight Center in Huntsville, Ala.

NASA Announces News Briefing on Mars Orbiter Science Finding


NASA will host a news briefing on Thursday, Aug. 4, at 11 a.m. PDT (2 p.m. EDT) about a significant new Mars science finding. The briefing will be held at NASA Headquarters in Washington.

The new finding is based on observations from NASA's Mars Reconnaissance Orbiter, which has been orbiting the Red Planet since 2006. Mars Reconnaissance Orbiter is managed by NASA's Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, Calif., for NASA's Science Mission Directorate in Washington.

NASA's Chandra Observatory Images Gas Flowing Toward Black Hole

The flow of hot gas toward a black hole has been clearly imaged for the first time in X-rays. The observations from NASA's Chandra X-ray Observatory will help tackle two of the most fundamental problems in modern astrophysics: understanding how black holes grow and how matter behaves in their intense gravity.

The black hole is at the center of a large galaxy known as NGC 3115, which is located about 32 million light years from Earth. A large amount of previous data has shown material falling toward and onto black holes, but none with this clear a signature of hot gas.

By imaging the hot gas at different distances from this supermassive black hole, astronomers have observed a critical threshold where the motion of gas first becomes dominated by the black hole's gravity and falls inward. This distance from the black hole is known as the "Bondi radius."

"It's exciting to find such clear evidence for gas in the grip of a massive black hole," said Ka-Wah Wong of the University of Alabama, who led the study that appears in the July 20th issue of The Astrophysical Journal Letters. "Chandra's resolving power provides a unique opportunity to understand more about how black holes capture material by studying this nearby object."

As gas flows toward a black hole, it becomes squeezed, making it hotter and brighter, a signature now confirmed by the X-ray observations. The researchers found the rise in gas temperature begins about 700 light years from the black hole, giving the location of the Bondi radius. This suggests the black hole in the center of NGC 3115 has a mass about two billion times that of the sun, making it the closest black hole of that size to Earth.

The Chandra data also show the gas close to the black hole in the center of the galaxy is denser than gas further out, as predicted. Using the observed properties of the gas and theoretical assumptions, the team then estimated that each year gas weighing about 2 percent the mass of the sun is being pulled across the Bondi radius toward the black hole.

Making certain assumptions about how much of the gas's energy changes into radiation, astronomers would expect to find a source that is more than a million times brighter in X-rays than what is seen in NGC 3115.

"A leading mystery in astrophysics is how the area around massive black holes can stay so dim, when there's so much fuel available to light up," said co-author Jimmy Irwin, also of the UA in Tuscaloosa. "This black hole is a poster child for this problem."

There are at least two possible explanations for this discrepancy. The first is that much less material actually falls onto the black hole than flows inside the Bondi radius. Another possibility is that the conversion of energy into radiation is much less efficient than is assumed.

Different models describing the flow of material onto the black hole make different predictions for how quickly the density of the gas is seen to rise as it approaches the black hole. A more precise determination of the rise in density from future observations should help astronomers rule out some of these models.


NASA's WISE Mission Finds First Trojan Asteroid Sharing Earth's Orbit

Astronomers studying observations taken by NASA's Wide-field Infrared Survey Explorer (WISE) mission have discovered the first known "Trojan" asteroid orbiting the sun along with Earth.

Trojans are asteroids that share an orbit with a planet near stable points in front of or behind the planet. Because they constantly lead or follow in the same orbit as the planet, they never can collide with it. In our solar system, Trojans also share orbits with Neptune, Mars and Jupiter. Two of Saturn's moons share orbits with Trojans.

Scientists had predicted Earth should have Trojans, but they have been difficult to find because they are relatively small and appear near the sun from Earth's point of view.

"These asteroids dwell mostly in the daylight, making them very hard to see," said Martin Connors of Athabasca University in Canada, lead author of a new paper on the discovery in the July 28 issue of the journal Nature. "But we finally found one, because the object has an unusual orbit that takes it farther away from the sun than what is typical for Trojans. WISE was a game-changer, giving us a point of view difficult to have at Earth's surface."

The WISE telescope scanned the entire sky in infrared light from January 2010 to February 2011. Connors and his team began their search for an Earth Trojan using data from NEOWISE, an addition to the WISE mission that focused in part on near-Earth objects, or NEOs, such as asteroids and comets. NEOs are bodies that pass within 28 million miles (45 million kilometers) of Earth's path around the sun. The NEOWISE project observed more than 155,000 asteroids in the main belt between Mars and Jupiter, and more than 500 NEOs, discovering 132 that were previously unknown.

The team's hunt resulted in two Trojan candidates. One called 2010 TK7 was confirmed as an Earth Trojan after follow-up observations with the Canada-France-Hawaii Telescope on Mauna Kea in Hawaii.

The asteroid is roughly 1,000 feet (300 meters) in diameter. It has an unusual orbit that traces a complex motion near a stable point in the plane of Earth's orbit, although the asteroid also moves above and below the plane. The object is about 50 million miles (80 million kilometers) from Earth. The asteroid's orbit is well-defined and for at least the next 100 years, it will not come closer to Earth than 15 million miles (24 million kilometers). An animation showing the orbit is available at: http://www.nasa.gov/multimedia/videogallery/index.html?media_id=103550791 .

"It's as though Earth is playing follow the leader," said Amy Mainzer, the principal investigator of NEOWISE at NASA's Jet Propulsion Laboratory in Pasadena, Calif. "Earth always is chasing this asteroid around."

A handful of other asteroids also have orbits similar to Earth. Such objects could make excellent candidates for future robotic or human exploration. Asteroid 2010 TK7 is not a good target because it travels too far above and below the plane of Earth's orbit, which would require large amounts of fuel to reach it.

"This observation illustrates why NASA's NEO Observation program funded the mission enhancement to process data collected by WISE," said Lindley Johnson, NEOWISE program executive at NASA Headquarters in Washington. "We believed there was great potential to find objects in near-Earth space that had not been seen before."

NEOWISE data on orbits from the hundreds of thousands of asteroids and comets it observed are available through the NASA-funded International Astronomical Union's Minor Planet Center at the Smithsonian Astrophysical Observatory in Cambridge, Mass.

JPL manages and operates WISE for NASA's Science Mission Directorate in Washington. The principal investigator, Edward Wright, is a professor at the University of California, Los Angeles. The mission was selected under NASA's Explorers Program, which is managed by the agency's Goddard Space Flight Center in Greenbelt, Md. The science instrument was built by the Space Dynamics Laboratory in Logan, Utah.

The spacecraft was built by Ball Aerospace & Technologies Corp., Boulder, Colo. Science operations and data processing take place at the Infrared Processing and Analysis Center at the California Institute of Technology in Pasadena. Caltech manages JPL for NASA.

For more information visit http://www.nasa.gov/mission_pages/WISE/news/wise20110727.html
useful links: Ferrini Boots, boy suits, Alligator boots